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Abstract

Programming models for distributed and heterogeneous ma-
chines are rapidly growing in popularity to meet the de-
mands of modern workloads. Task and actor models are
common choices that offer different trade-offs between devel-
opment productivity and achieved performance. Task-based
models offer better productivity and composition of software,
whereas actor-based models routinely deliver better peak
performance due to lower overheads. While task-based and
actor-based models appear to be different superficially, we
demonstrate these programming models are duals of each
other. Importantly, we show that this duality extends beyond
functionality to performance, and elucidate techniques that
let task-based systems deliver performance competitive with
actor-based systems without compromising productivity. We
apply these techniques to both Realm, an explicitly parallel
task-based runtime, as well as Legion, an implicitly paral-
lel task-based runtime. We show these techniques reduce
Realm’s overheads by between 1.7-5.3x, coming within a
factor of two of the overheads imposed by heavily optimized
actor-based systems like Charm++ and MP1. We further show
that our techniques enable between 1.3-5.0x improved strong
scaling of unmodified Legion applications.

1 Introduction

Modern workloads for distributed and heterogeneous ma-
chines place stringent demands on programming systems,
which must deliver both high productivity to facilitate rapid
program evolution and low overhead to extract maximum
performance from hardware. In an attempt to meet these
demands, both task-based [4, 7, 12, 14, 33, 37] and actor-
based [5, 15, 16, 20, 28, 33] systems have been adopted for
many important applications. Unfortunately, existing imple-
mentations of task-based and actor-based systems fail to
completely deliver both high productivity and performance.

*This work was done while the author was at Stanford.

By understanding the nature of the compromises that clients
must make when choosing either an actor- or a task-based
system, we can uncover the deep relationship between the
programming models and eliminate the need for compromise
for an important class of applications.

Actor-based programming models are the basis for some of
the first systems for distributed memory machines [5, 20, 28].
Actor models send and receive explicit messages between
actors (either objects or processes) to perform data move-
ment and synchronization. Due to the simplicity of the mes-
sage passing interface in most actor models, the underlying
systems are embodied by thoroughly optimized implemen-
tations to minimize overheads associated with sending and
receiving messages. While the simplicity of actor models
ensures low-overhead implementations, it often incurs a la-
tent cost: as programs become larger and more complex,
the burden of maintaining their correctness tends to scale
super-linearly. Sophisticated programs accumulate interact-
ing features that actors must support with a burgeoning set
of asynchronous messages that may arrive in a growing set
of permutations. In the worst case, the number of permuta-
tions that must be handled grows factorially with the total
number of message types, requiring a complex state machine
in each actor. Consequently, actor models have been sub-
ject to the criticism that they are error-prone and result in
programs that are difficult to maintain and evolve [32].

In contrast, task-based programming models strive to de-
liver higher productivity in response to the increasing com-
plexity of modern hardware. Programs are organized as a
directed acyclic graph (DAG), often constructed dynamically,
of short-lived computations called tasks. Explicitly-parallel
task-based models require clients to directly construct the
DAG by specifying data movement and dependencies be-
tween tasks, while implicitly-parallel models infer the DAG
from the data usage of tasks. Regardless of the DAG construc-
tion mode, task-based programs are simpler to modify with



Rohan Yadav, Joseph Guman, Sean Treichler, Michael Garland, Alex Aiken, Fredrik Kjolstad, and Michael Bauer

only local reasoning, making it easier to compose modules
together and maintain software over long spans of time [32].

Due to the generality of the DAG execution model, task-
based systems frequently suffer from higher overheads asso-
ciated with scheduling and executing the DAG of tasks. If the
granularity of tasks is sufficiently large, these overheads have
a negligible impact on performance. However, under strong-
scaling conditions or in applications with fine-grained paral-
lelism, the overheads can eventually inhibit performance as
they come to dominate the runtime of the program. Modern
accelerators, with growing compute power, are progressively
shrinking the execution times for tasks with each new gen-
eration, thereby placing increasing pressure on task-based
systems to lower their overheads to maintain scalability.

The complementary nature of the trade-offs associated
with tasks and actors suggests that there exists a deeper re-
lationship between the two classes of programming models.
Inspired by the classic duality between message-based and
procedure-based operating systems [29], we make the ob-
servation that actor and task programming models are also
duals of each other. Actor-based programs are characterized
by long-running actors that communicate through messages,
similar to processes in message-based operating systems. In
contrast, task-based programs are characterized by short-
lived tasks that operate on common data structures similar
to the procedures in procedure-based operating systems. Im-
portantly, we further claim that this duality extends beyond
functional equivalence, and is additionally a performance
duality where programs written in one style can be rewritten
in the other and achieve comparable performance.

We illuminate the sources of overheads imposed by task-
based models through different translation strategies be-
tween task-based and actor-based models. We then lever-
age these insights to develop compilation techniques for
task-based programming systems that translate demarcated
subgraphs of the complete program DAG into actor-based
programs. The compilation strategy results in a set of sur-
prisingly simple actors that efficiently execute the target
subgraph, greatly reducing overheads for important and re-
peatedly executed components of the complete program
DAG. Iterative applications, such as those present in do-
mains such as deep learning and scientific computing, are
amenable to our graph compilation techniques. As depicted
in Figure 1, our work exploits the actor-task duality in the
task-to-actor direction to bridge the gap between the perfor-
mance of task-based models and actor-based models while
preserving their programmability characteristics.

We implement our techniques within the explicitly-parallel
task-based system Realm [4], introducing a subgraph compi-
lation module. We modify the implicitly-parallel task-based
system Legion [12] to target this compilation module when
memoizing its dynamic analysis [30, 42], automatically im-
proving performance. Our work is applicable beyond Realm
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Figure 1. This work defines a new Pareto frontier for
distributed programming along the performance and pro-
grammability tradeoff. See Section 6 for performance details.

and Legion to improve the performance of both explicitly-
parallel and implicitly-parallel task-based systems.
The specific contributions of this work are:

1. An exploration of the duality and trade-off space be-
tween actor- and task-based programming models.

2. A compilation strategy that decreases the overheads
of both explicitly-parallel and implicitly-parallel task-
based programming models.

To evaluate our work, we measure the performance of
Legion and Realm within the Task Bench [39] framework.
We show that our techniques reduce the smallest task granu-
larity efficiently supported by both systems (see Section 6.1)
by 3.3x-7.1x and 1.7x-5.3x respectively. These optimizations
allow Realm to come within a factor of two of actor-based
models like Charm++ and MPI, which (to the best of our
knowledge) has not yet been demonstrated by any existing
task-based runtime systems. We then show that our tech-
niques improve the strong-scaling performance of unmodi-
fied Legion applications by between 1.3x-5.0x.

2 Background
2.1 Actor-Based Programming Models

Actor-based models are characterized by long-lived, stateful
objects called actors that maintain arbitrary local state and
communicate through asynchronous messages. In modern
actor-based systems, actors are often associated with ma-
chine resources (e.g., a GPU or a CPU core), and applications
are comprised of actors performing local computations and
notifying other actors to start follow-up work.

Actor-based programming models are well-studied and
have been extensively formalized in prior work [3, 22]. For
simplicity and the focus of this work, we consider a simple
actor-based runtime that might be embedded within a stan-
dard host language, as shown in Figure 2. This runtime is a
simple model of systems like Charm++ [26, 28] or Ray [33].
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class Processor;
class ActorRT {
void send_message(int aid, int mid, void* args, int len);
void register_actor (Actor* a, int aid, Processor target); };
// Actor is extended by the application
class Actor {
// Actors maintain arbitrary, but private state.
void handle_message(int mid, ActorRTx rt, void* args); };
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Figure 2. Actor-based Runtime System

class Event, Allocation, Processor, Memory;

using Events = vector<Event>;

class TaskRT {
void register_task(int tid, void (*task) (TaskRT#*, voidx));
Event launch(Processor p, int tid, voidx args, Events pre);
pair<Event, Allocation> alloc(Memory m, int s, Events pre);
Event copy(Allocation src, Allocation dst, Events pre); };

void task(TaskRTx, voidx args) { /# Stateless task body. %/ }
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Figure 3. Task-based Runtime System

The Actor object is extended (in potentially multiple ways)
by the application to contain arbitrary private state and an
implementation of the handle_message function. Actors are
registered with the runtime to a concrete resource. The main
primitive offered by the runtime is the ability to send a target
actor a message, which (remotely) invokes the target actor’s
handle_message. Applications in actor-based programming
models are often structured as state machines (discussed
more in Section 3.3) that accept messages until an expected
set is received to execute some application computation.
These state machines only modify the private state of the
actor handling each message; all inter-actor communication
and coordination occurs through message passing.

While not a common classification, we also consider two-
sided messaging systems like MPI to be within the actor-
based programming model family, as they share the proper-
ties of having long-running processes that react to incoming
messages. Two-sided messaging can be simulated with the
actor model we present by buffering arriving messages until
they are handled by the corresponding receive operations
(which is how MPI implements non-blocking messages).

2.2 Task-Based Programming Models

Task-based programming models emerged after actor-based
programming systems, aiming to provide more composable
and more accelerator-friendly abstractions for parallel com-
puting. The core concept in task-based programming models
is a task, which is a stateless, user-defined function. Tasks
may launch other tasks, and are issued onto a target proces-
sor to run asynchronously from the launching task. Task-
based applications express their computation as a graph of
tasks that operate over shared data structures. These task
graphs can be constructed in an offline or static manner [17],
or in an online, dynamic fashion [4, 7, 12, 14, 33].

Figure 3 presents a simplified interface for an explicitly-
parallel task-based system that supports dynamic task graph
construction (like Realm [4]). All operations in the task-based

model return an event that represents the asynchronous com-
pletion of the operation. Applications may launch tasks on
processors, allocate data in memories across the machine,
and copy data between allocations. Unlike actor-based mod-
els, tasks may have side-effects on allocations that outlive
their individual lifetimes, and tasks can share state through
these side-effects. Each asynchronous operation is predicated
on a set of events that must complete before the operation
executes. The task-based runtime schedules operations that
have all event preconditions satisfied, automatically overlap-
ping the execution of independent operations (such as data
movement and computation). The interface in Figure 3 can
be embedded within a general purpose language, and is the
target for arbitrary computation to dynamically construct a
task graph by computing dependencies and issuing tasks.

Figure 3 models an explicitly-parallel task-based system,
where the programmer is responsible for specifying depen-
dencies (represented with events) between computations.
Implicitly-parallel task-based systems, such as Legion [12]
or StarPU [7], leverage a higher-level program representa-
tion where tasks describe what data they will access, and
then the system performs an analysis to discover the neces-
sary dependencies between issued tasks. These higher-level
systems can express the resulting task graph after the de-
pendence analysis using an explicitly-parallel task-based
model. For the discussions of duality and compilation in Sec-
tions 3 and 4, when referring to task-based models, we are
specifically discussing explicitly-parallel models; we return
to implicitly-parallel models in Section 5.

3 Equivalence and Duality

We now describe a functional equivalence and performance
duality between actor-based and task-based models. We are
inspired by the work of Lauer et al. [29], which showed an
equivalence and duality between message- and procedure-
based operating systems. The duality arises in how applica-
tions developed in either system can share core application
logic, while the differences arise only in the synchronization
of when that shared application logic should execute. We
reveal this duality through different reduction strategies that
expose the structure underlying the two programming mod-
els. We then discuss the inherent tradeoffs made between
performance and programmability in the two models.

3.1 Actors — Tasks

We reduce actors to tasks by demonstrating an actor-based
system implemented with a task-based system. While tasks
are stateless functions, tasks may emulate stateful actors
by providing them access to persistent state. The reduction
is straightforward and shown in Figure 4. Notably, the re-
duction does not leverage the task-based model’s event/de-
pendence infrastructure and is relatively opaque; coordi-
nation and communication is still the responsibility of the
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1 // Let A be an actor handling messages M1 and M2, registered

2 // to processor P. Create an allocation for A in a memory

3 // visible to P. For simplicity, ignore the returned event.

4 auto result = task_rt->alloc(P.memory(), sizeof (A), {1});

5 A* stateA = result.second.get_base_pointer();

6 // Register tasks for each message A handles.

7 void taskAM1(void* args) { stateA->handle_message (M1, args); }
8 void taskAM2(void* args) { stateA->handle_message (M2, args); }
9 register_tasks({A_M1, task_A_m1}, {A_M2, task_A_m2});

10 // actor_rt->send_message(A, args) translates to a task launch
11 // with no event preconditions, which can be invoked from

12 // anywhere on the machine.

13 task_rt->launch(P, A_M1, args, {});

Figure 4. Reduction pseudocode from actors to tasks.

1 // A simple runtime system creates one worker per processor
2 // and a scheduler that interfaces with the application.

3 class Scheduler : Actor {

4 void handle_message(int mid, voidx args) {

5 switch (mid) {

6 case LAUNCH: {

7 auto [tid, p, ev, targs, preds] = unpack(args);

8 register_pending_task(ev, p, preds, {tid, targs});
9 send_message (this, SCHEDULE, {}); 1}

10 case TASK_DONE: {

1 Event ev = unpack(args);

12 notify_waiting_tasks(ev);

13 send_message (this, SCHEDULE, {}); 1}

14 case SCHEDULE: {

15 for (auto [ev, tid, p, args] : get_ready_tasks()) {
16 send_message (get_worker (p), EXEC, {ev, tid, args});
17 33333

18 class Worker : Actor {

19 void handle_message(int mid, void* args) {

20 assert(mid == EXEC);

21 auto [tid, ev, targs] = unpack(args);

22 execute_task_body(tid, task_args);

23 send_message (SchedulerID, TASK_DONE, {ev}); }}

24 // Tasks are launched by sending a message to the scheduler.

25 Event launch(Processor p, int tid, void* args, Events pre) {

26 Event ev = generate_fresh_event();

27 send_message(get_sched(), LAUNCH, {tid, p, ev, args, pre});
28 return ev; }

Figure 5. Runtime reduction pseudocode for tasks to actors.

programmer, hidden inside the existing actors’ message han-
dler implementations. However, this reduction can preserve
performance by eschewing the dependence infrastructure.
Each task launch with no preconditions can be implemented
efficiently with a single message, similar to the execution
of the actor program without the reduction. While simple,
this reduction also models the core of systems like Ray [33],
which provide actors and tasks in the same language.

3.2 Tasks — Actors

We now reduce task-based models onto actor-based models,
which starts to expose the structure of the programming
model design space. We discuss two fundamentally different
reduction strategies, which encapsulate different points in a
tradeoff between performance and programmability.

The first strategy is to construct a collection of actors that
form a runtime system to execute an arbitrary DAG that is
constructed dynamically and incrementally as tasks are is-
sued into the system one at a time. A simple set of actors
structured like a runtime system are described in Figure 5,
which contains a scheduler actor that manages pending tasks

and event dependencies along with a set of worker actors that
execute ready tasks on different processors. This reduction
strategy is a simplified model of how task-based systems are
implemented today, as independent processes communicat-
ing through active messages or remote procedure calls.
This reduction establishes functional equivalence between
actor-based and task-based models, but also reveals where
the performance differences between the two models arise.
Task-based models allow for the declarative specification of
dependencies between computations, but this abstraction
comes at the cost of a generic runtime system. In contrast,
high-performance actor-based applications avoid generic de-
pendence infrastructure and synchronize in an application-
specific manner. Actors directly encode the specific com-
munication patterns and dependence logic for a particular
application, rather than through an intermediate layer.

3.3 Specialization in Actor Models

To gain intuition for the specialization in efficient actor pro-
grams, we develop an example in Figure 6. Any parallel com-
putation can be described as a directed acyclic graph (DAG),
where the vertices represent atomic computations, and the
edges represent dependencies between computations. The
DAG itself may be dynamically constructed, and represents
an “unrolled” version of the application. Figure 6a depicts a
DAG with the application logic contained in the functions
f1, f2, f3 and f4, which are specified to be executed on
the processors P1 and P2. Actor-based and task-based im-
plementations of this DAG are shown in Figure 6b and Fig-
ure 6¢ respectively. The task-based implementation wraps
the application logic in tasks and directly translates the DAG
into tasks and events. In contrast, actor-based programs are
frequently structured as state machines that directly com-
municate to negotiate dependencies, instead of through an
intermediate runtime layer. Specializing the actors to a spe-
cific DAG avoids overheads that plague task-based systems
such as extra coordination messages, dynamic dependence
management, and task submission costs.

In the general case, a task-based system must be imple-
mented in the generic flavor discussed in Section 3.2, as the
desired DAG is expressed in a dynamic and incremental man-
ner: tasks may be spawned at any time from any processor,
and may depend on an event produced anywhere in the dis-
tributed system. However, if the unit of work submission is
a DAG instead of a single task, there is an opportunity to
perform the same specializations that users of actor-based
models employ, at least within that DAG. In particular, a fixed
DAG G of tasks can be compiled into a set of actors that di-
rectly communicate and eschew the standard dependence
infrastructure of the task-based runtime system, sending ex-
actly one cross-processor message per edge in G. We present
an algorithm to perform this specialization in Section 4, and
demonstrate that an implementation in the Realm runtime
system lowers overheads by up to a factor of five.
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// the F3 start state explicit. 19 f20);
send_message (P1_ACTOR_ID, F3_START); 20

send_message (P2_ACTOR_ID, F4_START);

1 class Pl1Actor : Actor { 13 class P2Actor : Actor {

2 void handle_message(int id, voidx) { 14 // Maintain an notification count

3 if (id == F1_START) { 15 // for the F4 start state.

4 f10; 16 int count = 2;

5 send_message (P2_ACTOR, F2_START); 17 void handle_message(int id, voidx) {
6 // Use a message send to make 18 if (id == F2_START) {

7

8

9

10 £30;

} else if (id == F3_START) { 21

} else if (id == F4_START) {
22 if (atomicSub(&count, 1) == @)

24 33}

@ 11 send_message (P2_ACTOR_ID, F4_START); 23 fa();
12 31} ;

(a) Example program DAG.

register_tasks ({TID_F1, f13}, {TID_F2, f2},
{TID_F3, f3}, {TID_F4, f4});

g W =

Event el = launch(P1, TID_F1);
Event e2 = launch(P2, TID_F2, el);
Event e3 = launch(P1, TID_F3, el);

6 Event e4 launch(P2, TID_F4, {e2, e3});

(c) Task-based implementation of Figure 6a.
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(b) Actor-based implementation of Figure 6a.
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(d) Visualization of actor state machines.

Figure 6. Example computation developed in actor-based and task-based programming models.

3.4 Duality and Tradeoffs

Actor-based and task-based models serve as different vehi-
cles for programmers to materialize a DAG into a concrete
implementation. The atomic computations represented by
the nodes of the DAG may be abstracted from the implemen-
tation substrate, as done in Figure 6, and be used in either a
task-based or actor-based implementation. The remaining
difference between programs in the two models is the im-
plementation of dependence management that coordinates
the shared application logic; that responsibility is either the
programmer’s (actors) or the runtime system’s (tasks). This
glue code (state machine construction or declarative task-
graph construction) is separate from the shared application
code, and we have shown in the previous sections how either
construction may be translated into the other.

While Lauer et al. [29] conclude that the performance
of message-based and procedure-based operating systems
is dependent on the underlying hardware, we believe that
the choice of actors versus tasks is a tradeoff between per-
formance and productivity. Actor-based models have been
historically viewed and experimentally shown [39] to im-
pose significantly lower overheads than task-based models,
due to the specialization discussed in Section 3.3. We ar-
gue that this performance comes at a cost of higher burden
on the programmer to manage the dependencies between
computations and to exploit available parallelism.

As seen in Figure 6d, actor state machines must explic-
itly manage communication and ensure all dependencies are
correctly met all while simultaneously exploiting as much
parallelism as possible. When the application DAG is modi-
fied to include a new vertex or edge, or moves a computation

onto a new processor, the state machines may require signif-
icant modifications. These alterations may include new mes-
sages and communication patterns, changes to the expected
number of incoming messages for a state, or new states to
handle the interaction between new vertices and all existing
vertices that may potentially execute in parallel. Targeting
accelerators like GPUs incurs additional complexity to actor
state machines. A common paradigm in actor models [28] is
to treat the completion of asynchronous accelerator compu-
tations as additional messages sent to an actor, increasing
the number of states and messages to reason about.

In contrast, task-based models specify dependencies in
a declarative style and leave satisfying those dependencies
while maximizing parallelism to the runtime system. This
declarative nature means that program modifications like
adding new dependencies, new tasks, or changing where
tasks run are considerably easier. Additionally, the declara-
tive specification naturally incorporates asynchronous accel-
erators — the runtime is responsible for ensuring that tasks
dependent on asynchronous work start only when the work
completes. Higher-level, implicitly parallel task-based sys-
tems [7, 12] further simplify programming by automatically
inferring parallelism, not even requiring the user to describe
dependencies [32]. As discussed, task-based systems have
historically traded this ease of programming for overheads
that come from implementing the abstractions they provide.
For example, the task-based Realm system has up to 7 times
the overhead of an efficient actor system like Charm++ (Sec-
tion 6). In this work, we make significant progress towards
collapsing this tradeoff space for applications that are able
to present repeatedly executed subgraphs to the task-based
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runtime system, such as those present in iterative computa-
tions that are found in domains spanning the gamut from
deep learning to scientific computing. For such applications,
we are able to provide the programmability properties of
task-based programming models while delivering overheads
approaching efficient actor-based programming models.

4 Compiling Task Graphs to Actors

We now leverage the duality between actors and tasks to
develop a compilation strategy that reduces the overheads
imposed by task-based models. Our approach lowers task
graphs to a set of specialized actors that avoid dynamic de-
pendence management and extraneous communication. We
then show in Section 5 how to leverage this intermediate
representation from an implicitly-parallel task-based system.

4.1 Interface

Applications define a task graph G with a set of vertices V
and edges E. Each vertex in V is an operation, such as a task
or copy, and edges describe dependencies between opera-
tions. Vertices may also be external pre- or post-conditions,
representing dependencies that either come from outside of
the graph, or must be notified when operations within the
graph complete. Applications dynamically construct graphs
and register them with the runtime; afterwards, the entire
graph may be launched as a single operation. The target
graphs for compilation are subgraphs of the complete pro-
gram graph that are performance critical and repeatedly
executed. The compiled subgraphs are then dynamically is-
sued by the application and stitched into the larger program
graph through the external pre- and post-conditions. Control
structures such as loops and conditionals are the purview
of the application dynamically building the larger program
graph, rather than constructs within the compiled subgraph.

4.2 Compilation

The goal of compilation is to specialize the runtime system
itself to the input task graph G, resulting in a set of actors spe-
cialized to G [21]. These specialized actors avoid expensive
synchronization structures (like events) and communicate
with the minimum number of cross-actor messages. Con-
structing specialized actors involves building a state machine
for each actor that executes vertices in G and transitions
upon receiving messages from other actors. To maximize
performance, the state machine must exploit all potential
parallelism in G by executing vertices as soon as their depen-
dencies are satisfied. Topologically unordered vertices in G
may execute in any order, and the completion messages for
these vertices may also arrive in any order. The state machine
handling all of these potential orderings to execute vertices
in G as soon as possible would contain a state for each prefix
of every topological ordering of G, as any one ordering may
result in different vertices being ready at any given point

Algorithm 1: Task Graph Compilation Algorithm

1 Compile (G)

2 resources « all processors and memory channels used in G

3 foreach r € resources do

4 V,y < nodes of G running on r

/* An edge list pre-processed for 0(1) lookup of
edges. Maintains an atomic counter for each
node in V,,’s incoming edges. */

5 E,, < in and out frontier of V,,, in G

6 RegisterActor(Worker(r, (Viy, E+y)), 1)

7 class Worker (7, (V,E))

8 HandleMessage (id, data)

9

switch id do
10 case INIT do
11 E « reset(E)

/* Start all ready to execute work. */

12 foreacho € V|4 (_,0) € Edo
13 | SendMessage(this, EXECUTE_OP, v)
14 case COMPLETED_EDGE do
15 (src,dst) « unpack(data)

/* Concretely computed by an atomic
decrement to an indexing structure. */

16 E « E — (src,dst)
17 if (_,dst) ¢ E then
18 | SendMessage(this, EXECUTE_OP, dst)
19 case EXECUTE_OP do
20 op « unpack(data)
/* Execute op on this actor’s resources. */
21 Execute(op,r)
22 foreach (op,dst) € E do
23 SendMessage (owner(dst),

COMPLETED_EDGE, (op,dst))
24 Execute (G)

25 foreach w € RegisteredWorkers(G) do

26 ‘ SendMessage(w, INIT)

in time. An example task graph and state machine handling
all valid topological execution orderings is shown in Fig-
ure 7. Explicitly enumerating and generating code for such
a state machine in the syntactic style of Figure 6d would
be infeasible due to the factorially large number of states!.
Instead, we separate the process into two phases, described
in Algorithm 1. A compilation phase first pre-processes G
and constructs a set of actors. Then, an interpretation phase
executes the graph, where each actor interprets a series of
commands to execute operations. The factorially large state
machine is encoded implicitly through different dynamic
configurations of each actor’s interpreter data structures.
The compilation step collects all processors and data move-
ment channels used by vertices of G. For each resource r,
we take the subgraph of G that runs on r (referred to as G,)
and pre-process G, into an indexing structure that enables
constant-time lookup of edges. Then, a set of counters is
prepared for each vertex in G, that maintains the number of

!Managing this large state space is difficult for humans too, who often trade-
off exploiting available parallelism to simplify the encoded state machine.
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Figure 7. Example task graph and a parallel message handling state machine.

pending incoming dependencies for that vertex. The combi-
nation of counter values for each vertex in G, corresponds to
a logical state in an actor state machine running on r. Finally,
the compilation step creates a worker actor for executing
the corresponding subgraph associated with resource r.

Each worker actor is structured as an interpreter that
processes incoming messages and updates its state. Upon
receiving a message to execute an operation, the worker exe-
cutes the corresponding operation and then sends a message
to the actors responsible for running each dependent opera-
tion in G. When receiving a message that an incoming edge
has completed, the worker decrements the corresponding
counter and potentially enqueues the target operation for ex-
ecution. Graph execution is initiated by sending each worker
actor an initialization message, which upon receiving, each
worker enqueues all operations with no predecessors.

The worker actors themselves contain the minimal func-
tionality for correctness to ensure low-overhead task graph
execution. Because G is known and fixed, the signaling of de-
pendencies can be done without any intermediate structures
or extra messages, such as those described in Section 3.2.
Furthermore, the actors eschew complex concurrent data
structures, and instead coordinate dependencies within an
actor using lock-free atomic decrements for each edge in G.
We show in Section 6 that this compilation strategy improves
overheads in the Realm runtime system by 1.7-5.3x.

4.3 Optimizations for Accelerators

To efficiently utilize asynchronous accelerators like GPUs,
applications must avoid blocking on the results of asynchro-
nous operations (i.e. run ahead) and dispatching to hardware-
supported synchronization whenever possible. The dynamic
nature of task-based models can make achieving these two
goals challenging. Since dependencies between tasks are
dynamic and unpredictable, task-based systems often lift
specialized accelerator dependence structures into the de-
pendence structure modeled by the task-based system. For
example, the Realm [4] runtime lifts CUDA events into Realm
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events and triggers the lifted Realm events by polling the
CUDA events in the background, missing opportunities for
run ahead and performing more expensive synchronization.

We specialize the target task graph G for asynchronous
accelerators by decoupling the host-side of operations that
launch asynchronous work from the device-side asynchro-
nous work itself, as visualized in Figure 8. For every node n
within G that launches accelerator work we add a new async
node n, representing the asynchronous work. Then, for ev-
ery outgoing edge (n,d) € G, if d has a corresponding async
node d,;, we add an async edge (n,, d;). If d does not have a
corresponding async node, then we add a sync edge (ng, d).
When executing G using Algorithm 1, every asynchronous
operation records state representing its completion, such as
a CUDA event. Async nodes with async edges synchronize
against the corresponding state, such as predicating a CUDA
kernel on a recorded CUDA event. Sync edges are lowered by
sending a message to the destination actor when the source
asynchronous operation completes. This transformation en-
ables significant run ahead and offloads synchronization to
hardware-supported mechanisms whenever possible. While
presented in the context of accelerators, this procedure could
be used wherever the computation in a task is decoupled
into separate stages, such as when performing I/O.

5 Lowering Implicitly Parallel Models

We have demonstrated how task graphs in explicitly-parallel
task-based models can be compiled into actor programs that
execute with low overheads. While explicitly-parallel models
are useful for certain applications, implicitly-parallel models
provide even larger productivity improvements by automat-
ically extracting parallelism from a sequentially expressed
application. We now discuss how to integrate our graph com-
pilation infrastructure into an implicitly-parallel task-based
system, specifically within a tracing [30, 42] module.
Tracing memoizes the dependence analysis performed by
an implicitly-parallel task-based runtime system. Applica-
tions demarcate the start and end of a trace, a repeatedly



Rohan Yadav, Joseph Guman, Sean Treichler, Michael Garland, Alex Aiken, Fredrik Kjolstad, and Michael Bauer

P (A
()

Node 0 Shard

Full Task Graph Node 1 Shard

Figure 9. Example of task graph sharded onto two nodes.

executed program fragment. The runtime then memoizes
the dependence analysis for the trace by recording all com-
puted dependencies between tasks in the trace. On future
invocations of the trace, the runtime executes tasks by simply
issuing them with the memoized dependencies (targeting
an interface like in Figure 3). To scale trace compilation
and replay, Legion [12] implements tracing in a sharded (or
control-replicated) manner [11, 38]. Each participating node
n memoizes and optimizes only the subset of the global task
graph that executes on n. Then, on trace replay, nodes collab-
orate to enforce dependencies that cross node boundaries.
We integrate our work into this sharded framework by rep-
resenting each node-local trace subset as a compiled graph.
We leverage the external pre-condition and post-condition
vertices of graph to coordinate the inter-node dependencies,
while intra-node dependencies are expressed through direct
edges, as visualized in Figure 9. Lowering traces onto com-
piled graphs further reduces the overhead imposed by the
implicitly-parallel runtime system: tracing itself removes
dynamic analysis overheads and compiling the task graphs
further reduces the overheads imposed by the underlying
explicitly-parallel runtime system. We show in Section 6
that combining tracing with task graph compilation yields
significant improvements in strong-scaling performance.
This sharded approach is a tradeoff between compilation
time and execution performance. As the size of the global
task graph scales with the size of the target machine, opti-
mization and analysis of the entire graph scales similarly.
This cost can become prohibitive if non-linear optimizations
are applied, such as a transitive reduction to remove unnec-
essary edges. Even representing the global task graph can
require too much memory and become infeasible at large
scales. On the other hand, sharding the global task graph
into a compiled graph per node relinquishes some perfor-
mance, as dependencies visible within a compiled graph can
be optimized further than opaque graph edges represented
by external pre- and post-conditions. We chose the sharded
approach to maximize scalability while also maximizing the
potential for overhead reduction: intra-node dependencies
can often be satisfied with hardware-supported, light-weight
communication mechanisms, while inter-node dependencies
are fundamentally limited by the cost of a network message.
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6 Evaluation

Overview. We evaluate our work on micro-benchmarks
and end-to-end applications implemented within the Le-
gion [12] and Realm [4] runtime systems. Using the Task
Bench [39] framework, we first show that our work signif-
icantly lowers the overheads imposed by both explicitly-
parallel and implicitly-parallel task-based models, and en-
ables explicitly-parallel models to support fine-grained com-
putations with competitive performance to low-level actor
frameworks like MPI [20] and Charm++ [28]. We then show
that our work improves strong-scaling of end-to-end appli-
cations developed in implicitly-parallel task-based systems.

Experimental Setup. We ran all experiments on an NVIDIA
DGX H100 supercomputer, where each node contains 8 H100
80GB GPUs and a 112 core Intel Xeon Platinum. Nodes are
connected with Infiniband. We configure Legion and Realm
with the GASNet-EX [13] networking module. We compare
against Open MPI 4.1.7, Charm++ 6.9.0, StarPU 1.4.7, Ray
2.47.1, and run all applications with CUDA 12.4.1.

6.1 Measuring Overheads With Task Bench

Task Bench [39] is a framework for comparing runtime sys-
tem overheads. Task Bench defines a graph of tasks (atomic,
coarse grained work items) in a generic interface to be im-
plemented by each benchmark system. The task graph is a
two-dimensional grid with width corresponding to available
parallelism, height corresponding to number of timesteps to
execute, and dependencies that relate tasks from timestep
t — 1 to timestep t, as shown in Figure 10. A Task Bench ex-
periment fixes a graph structure, and varies only the amount
of computation performed at each vertex. Figure 11 shows
the FLOPs achieved by various systems on a single node (8
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Figure 12. Task Bench minimum effective task granularity (METG) curves of different systems on stencil task graphs.

GPUs) running on a Task Bench graph with a stencil depen-
dence structure (shown in Figure 10) and width of 8. Each
Task Bench task launches a CUDA kernel that performs float-
ing point operations in a loop with the number of iterations
controlled by the x-axis of the graph. At high iteration counts
(long task run time), most systems achieve close to peak (non-
tensor-core) FLOPS available on a DGX H100 (272 TFLOPS),
but as the number of iterations decreases, various overheads
decrease the total FLOPS achieved by each system.

To evaluate overhead, Task Bench uses these performance
curves to define a metric called minimum effective task granu-
larity (METG). The METG(50) is the smallest task granularity
where a system achieves at least 50% of the peak FLOPS, quan-
tifying the task granularity at which overheads dominate
the execution time. METG is superior to several common
alternative metrics for measuring runtime system efficiency:
weak-scaling hides arbitrary overhead if the problem sizes
are too large, strong-scaling does not separate changing ap-
plication costs (e.g. increased communication) from runtime
costs, and tasks-per-second fails to consider the amount of
useful application work performed. See [39] for a complete
discussion of METG. For non-task-based systems, METG
encapsulates the amount of application work required to
offset operations like messaging and synchronization.

We compare versions of Legion and Realm optimized with
the techniques in this paper (called Legion Opt and Realm
Opt) against the well-known HPC actor systems Charm++ [28]
and MPI [20], the implicitly-parallel tasking system StarPU [7],

and the popular task and actor system from the ML commu-
nity, Ray [33]. On a single node, we also compare against
CUDA Graphs and an MPI implementation that uses CUDA
IPC Events to lower GPU synchronization overheads within
a single node. When possible, implementations for each sys-
tem were taken as-is from the previously published Task
Bench implementations, or adapted to utilize GPUs.

Figure 12a presents curves that plot task granularity against
the efficiency achieved by various systems on a single node
with a stencil task graph of width 8. These curves are derived
from Figure 11, where the x-axis now corresponds to the
runtime in milliseconds of each Task Bench task, instead
of the number of kernel iterations. We see three distinct
groups of systems, in order of increasing METG: actor and
compiled task-based systems, standard task-based systems,
and Ray. This configuration’s METG is mostly determined
by how fast each system can issue CUDA kernels. The actor
and compiled task-based systems achieve METG(50)s be-
tween 22us-39us (MPI and Legion Opt, respectively). These
systems are also competitive with CUDA Graphs; since we
expect CUDA graphs to be an efficient way of launching
kernels, this demonstrates we are achieving high absolute
efficiency. We are separately interested in why these sys-
tems can outperform CUDA Graphs, but that is beyond the
scope of this paper. The standard task-based systems (Legion,
Realm and StarPU) accumulate overheads from numerous
sources, achieving METG(50)s between 83us-173us. The final
system is Ray, where we report results using Ray’s actors
as well as Ray’s graph compiler [8]. We initially developed
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an implementation purely using Ray’s tasking interface, but
found the performance to be too poor to easily visualize
with the other systems; each Ray task created a new process,
causing re-initialization of structures like the CUDA runtime,
requiring task granularity of at least hundreds of millisec-
onds. Ray Actors achieve a METG(50) of 1.8ms, which is
improved by compilation to 570us, both larger than HPC
tasking systems. These overheads are likely due to Ray sup-
porting features such as resilience and elasticity.

Figure 12b contains single-node results with a graph of
width 32, exposing 4-way task-parallelism on each GPU and
offering an opportunity to hide latency. With task paral-
lelism, the METG(50) of HPC systems falls into the single
microseconds, where MPI+CUDAIPC, Charm++ and Realm
Opt achieve METG(50)s of 5.1us, 6.1us and 7.9us respectively.
Other systems fall off earlier for different reasons. The vanilla
MPI implementation is written in a bulk-synchronous style,
unable to perform fine-grained interleaving of CUDA ker-
nels that the MPI+CUDAIPC implementation can. Legion
Opt achieves a METG(50) of 25us (a 4.6x improvement over
Legion) despite Realm opt achieving a METG(50) of 7.9us.
This overhead originates from within task execution itself:
for correctness reasons, Legion tasks always query the run-
time system for pointers to the task’s data in case different
mapping decisions for a task’s data have been made from one
iteration to the next. These queries took roughly 20us in ag-
gregate to complete, placing a floor on the smallest tasks that
Legion can execute. In contrast, the Task Bench implemen-
tations in lower level systems like Realm (or Charm++ and
MPI) preallocate all necessary data, and pass direct pointers
into task invocations to avoid overheads.

We now move to multiple nodes, where Figure 12c con-
tains results on 4 nodes using a 32-wide graph (1 task per
GPU). Like Figure 12a, this configuration is latency con-
strained, without parallelism to hide communication costs.
Charm++ and MPI perform the best, achieving METG(50)s of
of 29us and 27us respectively. Realm Opt achieves a METG(50)
of 54us, 3.5x better than standard Realm. The performance
difference between Realm Opt and Charm++/MPI arises from
the tradeoff discussed in Section 5: the Realm Task Bench
implementation is developed in a sharded style for scalabil-
ity, where each node constructs a local graph and connects
to other nodes with Realm’s standard dependence infras-
tructure. While still making a single network round-trip,
the dependence infrastructure has higher overhead than
a Charm++/MPI message handler. Legion Opt achieves an
METG(50) of 125us, 2.5x better than standard Legion. While
Ray is a distributed runtime system, we did not evaluate it
due to the lack of competitiveness on a single node.

The final Task Bench experiment is in Figure 12d, a 4-node
configuration with 4-way task parallelism on each GPU. The
results are similar to Figure 12b, where Charm++ achieves a
METG(50) of 6.1us and Realm Opt achieves a METG(50) of
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8.8us (a 5.2x improvement over standard Realm); the bulk-
synchronous MPI implementation degrades in performance
earlier. With some task-parallelism to exploit, Realm Opt is
able to close the performance difference experienced in Fig-
ure 12c. Legion Opt supports a similar METG(50) as on a sin-
gle node (28us), running into the same intra-task overheads,
but achieving a 7.1x improvement over standard Legion.

Our experiments show that our work dramatically low-
ers the overheads imposed by both explicitly-parallel and
implicitly-parallel task-based systems, improving the METG(50)
of both Legion and Realm by between 3.3x-7.1x and 1.77-5.3x
respectively. By transforming critical subsets of task-based
programs into actors, we recover a significant amount of the
performance difference with native actor programs, and de-
liver competitive runtime system overheads not previously
achieved by existing task-based systems.

6.2 Strong Scaling Implicit Parallelism

We now now demonstrate these reduced overheads yield
end-to-end strong-scaling improvements for applications
developed in implicitly-parallel task-based systems. In each
application, Legion is already performing tracing to elimi-
nate dynamic dependence analysis overheads — the remain-
ing difference is the efficiency of the traced task graph’s
execution. Each benchmark application has been heavily op-
timized separately from this work, and many have appeared
in existing publications [11, 30, 38]. We also note that while
strong-scaling studies tend to present very large problem
sizes (often not even fitting into a single GPU memory), our
experiments instead start scaling at a modest problem size,
filling roughly half the memory of just one H100 GPU. The
time spent in graph compilation was negligible, less than
50ms on every node.

Stencil. The smallest application is a stencil benchmark
from the Parallel Research Kernels [40], with results in Fig-
ure 13a. The benchmark performs a radius-2 star-shaped
stencil over a two-dimensional grid. The benchmark has no
task parallelism, and is thus sensitive to any latencies when
launching kernels or performing the halo exchange at grid
boundaries. As a result, Legion Opt is able to continue im-
proving performance after 16 GPUs while standard Legion
falls over, resulting in an improvement of 3.4x at 32 GPUs.

MiniAero. MiniAero is a 3D unstructured mesh proxy
application from the Mantevo suite [18] that implements an
explicit solver for the compressible Navier-Stokes equations,
with results in Figure 13b. Unlike Stencil, MiniAero has many
opportunities to exploit task parallelism, benefiting from
lower overheads to enable more utilization of the GPUs.
Similarly to the performance of Stencil, Legion Opt continues
scaling after 16 GPUs, while standard Legion falls off after
16, achieving a 4.7x improvement at 32 GPUs. We attempted
to compare against the reference implementation, but found
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Figure 13. Strong scaling performance of end-to-end Legion applications (higher is better).

that it depended on unsupported versions of Kokkos, and
did not run when ported to a newer version.

PENNANT. PENNANT is a 2D unstructured mesh proxy
application simulating Lagrangian hydrodynamics [19], with
results in Figure 13c. The PENNANT main loop additionally
contains some all-reduce operations that cannot be hidden
by parallel work, and thus are exposed and affect the total
speedup achievable. As part of graph compilation, we pre-
plan and optimize copies present in the task graph, lowering
the latency of small copy operations, which improves the all-
reduce performance. The standard Legion implementation
falls over at 8 GPUs, while Legion Opt continually delivers
speedup up to 32 GPUs, achieving a 5.0x improvement. The
reference PENNANT GPU implementation only runs on a
single GPU, and employs optimizations that make it not
directly comparable to a multi-GPU implementation.

Conjugate Gradient. Our final benchmark is a conjugate-
gradient (CG) solver for a 1-D Poisson problem, with scal-
ing shown in Figure 13d. We additionally compare against
a baseline implementation developed using PETSc [9], an
industry-standard sparse linear algebra library developed
with MPI. Legion Opt, standard Legion and PETSc all strong
scale well, with PETSc doing the best, and Legion Opt im-
proving upon the scalability of Legion. Legion Opt achieves
88% of PETSc’s performance at 32 GPUs, while standard Le-
gion only achieves 67%. The conjugate gradient application
has very little task-parallelism, similar to Figure 12c. In the
4-node Task Bench configuration without task-parallelism,
Legion Opt’s METG(50) was 125us, which the average task
duration of CG at 32 GPUs approaches, corresponding to the
beginnings of the performance difference against PETSc.

7 Related Work

Actors. Actor-based models are used extensively and un-
derlie significant amounts of distributed software. Many
runtime systems are implemented as actors that communi-
cate through low-level networking layers [13, 35]. Numerous
frameworks have been developed [5, 15, 16, 20, 24, 26, 28, 33]
that embed actor functionality within a host language and
provide convenient language features for communication

between actors. Within these frameworks, languages have
been proposed to simplify the state management involved
in developing large scale actor programs [27]. Finally, actor-
based models have received significant formal study [3, 22],
and built on work developing process calculi [31].

Tasks. Many task-based systems have been developed
by the HPC [4, 6, 7, 12, 14, 37], cloud computing [43], and
ML [2, 10, 33] communities. Each system was designed with
different priorities and driving applications but at their core
allow for the programmer to execute a parallel computation
graph. The methods to describe and construct the underly-
ing graph differ across systems, such as through automatic
extraction, algebraic description or explicit user construc-
tion. The smallest task sizes efficiently supported by existing
systems can differ by multiple orders of magnitude [39].

Memoization and compilation are standard techniques
used in task-based models to lower overheads in repeatedly
executed computations. The Legion runtime system uses
tracing [30] to memoize the costs of dependence analysis. Re-
cent work by Yadav et al. [42] shows how implicitly-parallel
runtime systems can automatically find traces to memoize,
accelerating task-based programs without user intervention.
Compiling traced task graphs into low-level actors is the final
step of this memoization pipeline, removing the underlying
explicitly-parallel runtime system’s overhead from iterative
execution. On a single node, CUDA Graphs [1] are used
extensively to lower the overheads of executing repeated
graphs of CUDA kernels, and are used as graph execution
targets by single-node tasking runtimes like CUDASTF [6].

Unifying Actors and Tasks. Given the dichotomy be-
tween actor-based and task-based programming models, re-
searchers have introduced programming models that attempt
to provide support for both actors and tasks [25, 33]. This
tension has been evinced within the Ray programming sys-
tem [33], which was initially conceived as a task-based pro-
gramming model. The overheads from the implementation of
tasking were large enough that actors were introduced into
the language to lower overheads of certain computational
patterns. The actor model allowed Ray to lower runtime
overheads, but exposes end-users to the difficulties of state
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management discussed in Section 3.3. Our work shows how
these overheads may be avoided while retaining the produc-
tivity benefits of task-based programming models.

Message and Procedure Duality. Our work was inspired
by the duality between message-based and procedure-based
operating systems presented by Lauer et al. [29]. Lauer’s
work spurred further debate about whether threading-based
or event-driven architectures were the right choice for pro-
ductivity and performance [23, 34, 41]. We take the position
that in distributed programming, actor-based and task-based
models occupy different ends of a productivity and perfor-
mance tradeoff space, and demonstrate a technique to re-
cover actor performance in task-based programs without
sacrificing productivity. Follow on work explored similar
dualities in other domains, such as in fault-tolerance [36].

8 Conclusion

In this work, we described a duality between task-based and
actor-based programming models, and explored a trade-off
space between performance and productivity defined by the
two models. Through this duality, we develop a compilation
and execution strategy for task-based programming models
that lower task graphs onto a set of specialized actors, greatly
reducing the overheads that task-based programming models
impose. We show through implementations within the Realm
and Legion runtime systems that our approach can make
task-based programming systems offer overheads competi-
tive with actor-based systems, and can significantly improve
the strong-scaling of implicitly-parallel programming sys-
tems. Our work defines a new point on the Pareto frontier
between performance and programmability in distributed
programming models, by retaining the programmability of
task-based models while greatly increasing performance.
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