
A PARALLEL ALGORITHM FOR
SUBGRAPH ISOMORPHISM

Rohan Yadav and Umut A. Acar

Carnegie Mellon University

SPAA 2019

SUBGRAPH ISOMORPHISM BACKGROUND

➤ Is G1 a subgraph of G2?

➤ Involves finding a mapping f of vertices
from G1 to G2 that preserves edge
relationships

➤ For each edge (u, v) in G1, (f(u), f(v))
must be in G2

➤ Subgraph isomorphism is NP-Complete

➤ Has applications in

➤ pattern recognition

➤ biochemical applications

➤ graph databases

➤ …

STRATEGY: SEARCH ALGORITHMS
➤ Explore a state space to find the isomorphism

➤ A match is a tuple of vertices mapping a vertex in G1 to a vertex in G2

➤ A matching is a partial isomorphism between G1 and G2, represented by a set
of matches

➤ Matchings grow and shrink by adding and removing matches

➤ A matching is consistent if it preserves edge relationships

➤ Algorithm —

Start with an empty matching M
Loop:

add a new match (u, v) to M such that M is not visited

visit M if M is consistent
if M is isomorphism then done

SEARCH TREE STRUCTURE

Consistent Matching Consistent Matching

Inconsistent Matching

BASIC TREE SEARCH ALGORITHM
def search M =

for each child edge (u, v) of M:

if M + (u, v) is consistent:

add (u, v) to M

if search M:

return true

remove (u, v) from M

return false
➤ Key idea: efficient backtracking

➤ Core of known algorithms like VF2,
RI [Cordella ’04, Bonnici ‘13]

CHALLENGES WITH PARALLELIZATION

➤ Idea: try all children in parallel

➤ Performs poorly — why?

➤ Requires persistent matching
structure

➤ Highly irregular branches

➤ With pruning, search tree is
irregular

➤ Work is not predictable resulting
in fine grained tasks

➤ Prior work has identified these issues

def search M =

parallel for each child edge
(u, v) of M:

if M + (u, v) is consistent:

add (u, v) to M

if search M:

return true

remove (u, v) from M

return false

LAZY PARALLELISM

➤ Goal: maintain efficiency of sequential algorithm

➤ Create parallelism lazily on-demand

➤ p workers
➤ Each worker runs (almost) the sequential algorithm
➤ But generates parallelism by splitting its work when

requested

Worker Worker … Worker Worker

ALGORITHMS FOR LAZY SPLITTING
➤ Frontier data structure for representing work of each worker

➤ Push and pop edges from frontier to explore

➤ Split frontier when requested to share work

➤ Backtracking from failed searches

➤ Frontier structure represents a search path

➤ Split operation returns contiguous search paths

➤ Frontier invariants make it possible to efficiently implement
backtracking

➤ Scheduling for irregular and unpredictable parallelism

➤ Amortization technique: workers share work only after performing
enough work to pay for sharing [Acar et al. ’15]

PRELIMINARY RESULTS
➤ Based on VF2 implementation

➤ Tested on the database designed by
the creators of the VF2 algorithm

➤ Overhead over VF2 algorithm is
between 15%-40%

➤ Established bounds on single core
work efficiency and p-processor space
overhead

Subset of preliminary results

FUTURE WORK

➤ Extend the core ideas of our algorithm to more recent
algorithms like VF3 [Vincenzo ’16]

➤ Perform a larger experimental evaluation with more data sets
and different metrics (aggregate speedup, etc.)

➤ Explore theory and analysis of lazy splitting style algorithms,
prove guarantees about the span of our algorithm

